

Chloe, Part I
A Robotic Exploration into Digital Companions

Part I: The Body

Melissa Kronenberger

ITGM 736: Physical Interactive Media

Fall 2013

I Design Abstract
When we use the term, 'interaction design,' we are not limited to discussing video games and web
sites. In fact, interaction designers can be found in many disciplines, from other entertainment-specific
fields like theme park design, to broader and more varied subjects like marketing. Interaction design is
relative to information systems, the service industry, education, communication, and any other system
in which an exchange and an experience both occur.

What follows is my exploration into the realms of physical interactive media, through the design and
development of an interactive toy named Chloe. As a toy, Chloe will take the form of a six-legged
robot, or 'hexapod.' As in an interactive entity, she will be driven by an on-board 'brain' in the form of
an embedded system.

To further the research and development of my Agon & Alea Thesis, Chloe will be used to gain insight
into how how physical toys can become the artificial companions of their owners. After my previous
experience with augmented reality and computer vision, Chloe will be used to evaluate the role
sound can play in enhancing a bonding experience. It is expected that Chloe will become responsive to
sound at the end of Chloe, Part II.

In Chloe, Part I, I will be hunting down and applying the information I need in order to bring the toy's
physical form to life. The end goal of Part I is to assemble Chloe's physical body, set up the
development environment, communicate successfully with the chosen embedded system, and, finally,
use this setup in order to operate Chloe's legs.

II Table of Contents
I Design Abstract ... 2

II Table of Contents ... 3

III Introduction .. 5

1 Project Overview ... 5

2 Project Purpose ... 5

3 Report Structure ... 5

4 Project Motivation ... 6

5 Objectives and Aims .. 8

6 Minimum Requirements .. 8

IV Background ... 9

1 Human Resources .. 9

a A Note on Human Resources ... 10

2 Deciding on the Board ... 11

3 List of Parts .. 13

1.BeagleBoard BeagleBone... 13

2.Control board for direct interface with servos .. 14

3.Robot kit and servos ... 14

4.Windows PC ... 15

4 Additional Research ... 15

V Project Management ... 19

1 Documentation as a Design Methodology .. 19

2 Project Schedule .. 19

3 Project Log ... 19

VI System Design ... 22

1 Implementation and Debugging .. 24

a Introductory Exploration of the Board and Its Abilities ... 24

2 Moving On From Pins and Headers ... 27

3 The Boot Process ... 28

a Step 1 ... 28

b Step 2 ... 28

c Step 3 ... 29

d Step 4 ... 29

e Step 5 ... 29

4 “Baseline Software...” ... 29

a u-boot .. 29

b Linux Kernel ... 30

c OE-core based BSP ... 30

d Mentioning “Linaro” .. 30

VII Switching the Operating System .. 31

1 It Starts... .. 31

2 “Screen” ... 32

3 Retrospect – Past Tense .. 32

4 Finding Out the IP Address, in Retrospect ... 33

5 Reflection on Installation ... 33

VIII Stage Two: Cross-Compiling ... 34

1 Setting Up the IDE .. 34

2 Here we go again! .. 34

3 It Actually Takes a Very Long Time To Solve This ... 35

4 Onto the LEDS .. 36

5 LEDS in C(++) .. 37

6 The LEDS Shall Work .. 38

7 The Legs ... 40

IX Conclusions ... 42

X References ... 43

XI Appendix A: Schematics ... 48

1 BeagleBone .. 48

2 Control Board ... 53

a Schematics ... 53

b Connections ... 54

c Communication .. 55

3 Vital Robot Images ... 57

III Introduction
“As I sit here with my new BeagleBone cupped in my hands, all white with two long strips of black
ports, I can’t help but be intimidated. I have never worked with a piece of hardware like this before,
and I’m scared. The sheer amount of knowledge I will have to assimilate in a short period of time will
be staggering.

“Then again, I already know I can do it. First of all, I've worked on harder projects. Secondly, I have
worked on projects with even less preliminary knowledge. And thirdly, I am surrounded by people
with engineering majors. I expect the latter to actually be the least helpful; I'm known to have a
temper when frustrated.

“Where was I? Ah yes. As I sit here with my new BeagleBone, my embedded system of choice, I cannot
help but wonder at the power packed into such a tiny thing. This is the board that will bring to life my
very first robot, and that? That is going to be neat. I think I will name her Chloe.”

1 Project Overview
Chloe, Part I is the first of a three-part project that will deal with the construction, design, and
programming of a small interactive robot. This robot will be brought to life by a small embedded
system that will act as the toy's brain. At the conclusion of Chloe, Part III, the toy will be able to walk
and respond to a player's voice.

2 Project Purpose
This report details my experience developing with physical interactive media for the very first time. Its
primary purpose is to enable me as an interactive designer. As a result, I will have the guts and
intuition necessary to design for upcoming technology, or lead a team of toy developers.

Secondly, because Chloe already fits the mold of being an artificial character, I will be using her to
further my thesis research into how players can bond with and derive emotional pleasure from
interactive characters. Specifically, I will use Chloe to evaluate how vocal interactions can be used to
create emotional pleasure.

3 Report Structure
As a personal exploration and thesis tool, I have elected to write the majority of Chloe in the style of a
first-person present tense narrative; yet I have organized this narrative into a formal report.

The decision to use a present-tense narrative form reflects the experience of working on Chloe, which
feels often like detective work. I have come to describe my learning and research process as, 'hunting
for clues,' to what not only my solutions, but even my questions should look like.

In the future I intend to use this report as a tool for solving complex problems; and I feel it is
important to preserve not only my results, but also my problem solving technique, stumbling blocks,

and my general pacing.

The decision to organize this information in a formal report stems from a need to create a useful tool,
both for myself and for other designers who might come after me. With the organization and
completeness imposed by a formal structure, it will become possible for other designers to replicate
my process, compare their solutions, and make sense of my results. It also ensures that I make a
thorough record for my own purposes.

The report will be broken into the following sections: Introduction, Background, Project Management,
System Design, Implementation and Debugging, Conclusions, and Appendixes.

Introduction will specify the motivations and goals of the project. Background will explain information
about the project I have chosen, including a list of parts. It will detail how I chose the project and what
my logical, artistic, and personal reasoning was for doing so. Project Management will describe my
methodology both in terms of scheduling and recording my progress, while briefly touching on how
these project management techniques have become part of my personal design methodology.

System Design will highlight how the project I have chosen will come together, and how the list of
parts will combine in order to form the finished toy. The longest section of the paper will be
Implementation and Debugging, which will read as a linear narrative starting from the construction of
the robot's legs and chassis, and terminating when I am able to move the toy's various appendages.

4 Project Motivation
Now that I already have my board, I suppose I should record my project motivation.

The very first thing I knew about my project was that I wanted to create some kind of toy. I wanted it
to move, even if it had only two wheels. I quickly summoned up a simple project within my skull: My
toy would be a little two-wheeled alligator that drove about randomly until it encountered a person's
finger, whereupon it would chase after that finger in an attempt to bite it.

This was in keeping with the general lean of my thesis. I am a game designer, and I am working on
creating emotionally compelling interactive characters that can converse with their players and offer
entertainment and pleasure through emotional bonding. I also had extensive experience with
computer vision as a result of using augmented reality in my thesis, and I believed that this project
was both feasible and natural for me. It was a bonus that our teacher requested we do something
'cool.'

I was only a few hours into researching robot kits and do-it-yourself guides when I finally stumbled
upon something very old and very familiar to me: A hexapod.

For the uninitiated, a hexapod is a six-legged robot that looks something like a spider. It is more
difficult to drive than any wheeled robot, but it's considerably easier to control than a quadruped or
biped. The reason I say hexapods were 'old' and 'familiar' to me is because I was suddenly hit by a
massive flashback. I already knew what a hexapod was.

You see, I had researched hexapods before, in my life; several times, even. As if a little box in the attic
of my life had been opened, I suddenly remembered researching the six-legged monsters thoroughly
and being fascinated by them. As I remembered this, I started remembering other things, too.

When I was a child, I'd asked for a 'real live robot' for Christmas. After much deliberation, my mother
had father purchased a quadruped robot kit. My father and I had accidentally broken it mid-assembly,
and it had been retired to the bottom of a toy bin, but scarcely a year before entering this major I had
gone home for Christmas, dug the little guy out, and put it all together with a jury-rigged gear. It had
never responded to voice commands, but it had walked. I'd been amazed.

That had started my fascination with hexapods. So why hadn't I built one? Why had hexapods been
retired to a dusty memory-attic box? The answer: cost.

In America, hexapods were cost-prohibitive for an unemployed kid. Now in Hong Kong, with Shenzhen
just across the border, I suddenly found myself confronted with an online listing for an economically
viable little six-legged beauty.

I fell in love immediately; that is the solid truth behind my motivation.

I have been told that it is only through our interests that we can truly be inspired. Well, the moment I
first saw the hexapod, a very different, surprisingly simple, and remarkably well-defined project plan
rolled into my head.

1. I was going to use that hexapod chassis to construct an artificial pet.
2. It was sound, not vision, that this pet needed to process. I do not communicate visually with

my cat; I communicate by touch and sound. How could I have missed something so simple for
the entirety of my thesis? I needed to test this!

3. I would program it to walk, to turn towards me, and to dance in response to my voice.
4. I would use it in the future as a test platform for my thesis's 'bonding' engine.
5. I would design its behavior, and later its appearance, based on the peacock jumping spider to

make it cute and more approachable to a general audience.
6. I would program it to respond to its name, unlike my cat.
7. Her name was Chloe.

I had been too afraid of tackling a 'difficult' project and I'd instead resigned myself to doing an
uninteresting one! What did a little snapping alligator robot have to tell me about my thesis or
research interests? Nothing! It was only a hardware project.

Chloe, on the other hand, is tied to my thesis, my interests, and my past; she is feasible and lies just
within the boundaries of what I can push myself to achieve in the allotted time; she will be incredibly
difficult, incredibly satisfactory, and incredibly valuable to build; and she is most certainly cool. She is
the right project, at the right time, for the right reasons, with the right motivation.

She is Chloe. The act of building her provides its own motivation.

5 Objectives and Aims
Chloe, Part I is responsible for meeting X sets of objectives.

Firstly, Chloe, Part I must work towards fulfilling the course requirements set forth by my ITGM 736:
Physical Interactive Media course. The course requirements are defined as such: students must learn
to use physical input devices, develop physical interactive media prototypes, research the best
software and hardware solutions for a personal project, develop a personal project using custom
software and hardware, produce short video documentation of their projects for festivals and
portfolio reels, and write research reports.

Secondly, Chloe, Part I must work towards the individual requirement of the project as set forth in the
syllabus; in this case, Project A. This includes respecting the time table set forth in the course syllabus
for the project pitch, prototype, documentation, and presentation.

I have also identified a number of objectives that I intend to meet before I can move on to Chloe, Part
II. The chassis and legs must be fully assembled, and the full range of servos must be accessible. I will
not consider Chloe, Part I to be truly complete until I have successfully driven the full range of servos
through on-board code, and gotten the robot to stand on its own. This project must set the stage for
Chloe, Part II, which means the robot must be in such a state as it can signal it understands vocal
commands.

My overarching objective for Chloe is to give me the confidence and familiarity necessary to start
other physical interactive media projects. My learning objectives are focused on gaining a broad
understanding of the discipline and the various steps of the development pipeline. In this way I not
only gain an entry-point to learning more about the discipline, but I also develop the understanding I
will need to communicate with hardware engineers and low level programmers in the future.

At the end of Chloe, I should be able to visualize the process for translating almost any idea for a
physical interactive media project into a design and then into a fully developed product.

On a personal level, I am eager to learn more about Linux, using terminal commands to communicate
with the computer, communication protocols, what all those tiny boards do and what they are made
of, how to use wires and pins to make a physical prototype, how electricity can be used to create such
complex computation devices, what's currently 'out there' available for designers to play with, and
how to program a miniature computer.

6 Minimum Requirements
Chloe, Part I's minimum requirements can be derived from taking into account objectives that were
established through in-class discussions with the teacher concerning project scope. These objectives
are the most concrete and also the most minimal. Chloe must have at least one assembled joint that
includes a servo. The servo must be hooked up to my board of choice, which must be able to access
and drive the servo.

IV Background
The course syllabus recommends using an Arduino kit that comes with support for Microsoft Kinect.
The kit comes with an exercise book, and takes much of the guesswork out of designing for physical
systems. More importantly, Arduino boards are specifically built for designers. They carefully eliminate
the need to learn many 'engineering' concepts in order to get to meaningful functional prototypes.

Back before I'd rediscovered hexapods, it seemed like I should go with an Arduino board. On the other
hand, I didn't really want to work with Kinect. Would an Arduino meet my needs? What would happen
to me if I chose to go off the beaten path and purchased a different board?

I had some other options, at least. You see, I had some experience with augmented reality, a point I
mentioned above when I illustrated my 'alligator' project. I had recently worked with Quallcomm's
augmented reality toolkit, Vuforia. Due to that I knew Quallcomm made processors for mobile phones,
which meant Quallcomm probably made tiny boards for designers. I knew that Quallcomm planned to
release pointcloud technology for their snapdragon processors in the near future, which to me meant
that any Quallcomm board would be able to do some serious visual processing.

I started to research, and I quickly found that Quallcomm did make highly powerful boards called
DragonBoards, but they were way outside my price range. Their competitors seemed to be Texas
Instrument's processors in PandaBoards and BeagleBoards, which I observed were more affordable.
Still, I had no way of knowing whether I should stick with my teacher's suggestion of Arduino, pursue
one of these other boards, or look for an altogether unrelated board from some other company.

I needed some way to make a good decision. Something better than long hours of research, dozens of
online reviews, or countless forum posts...

I needed a brain to pick.

1 Human Resources
'The Captain,' for that is how I shall be referring to him, loves RC toys.

He spends most of his days playing around with tiny boards and building bizarre prototypes. He, along
with a large number of eclectic artists, engineers, and technical artists, make up my immediate peer
group; the perfect environment in which for me to design and build my very first robot.

The Captain, however, is worthy of particular note. He has met and worked with my instructor, which
gives him unique insight into the direction my class will be heading. In fact, The Captain also has
several years of teaching experience under his belt, so he knows how to talk to a novice.

Perfect. He will probably end up being my most important resource.

Equally valuable as a human resource is my teacher. With a Masters degree in Engineering (among
other things), and plenty of experience in education, my teacher is a wellspring of knowledge. The
fact that I have an engineer on each side of the fence, both in class and out, means that every
question I ask leaves me in a thorough matrix of immediately valuable and highly targeted
information. Where one might only mention the use of a certain protocol, the other can explain its

history and application; where the other might suggest an objective, the one can send me on a search
for key terms that will help me understand how to meet that objective. Neither would voluntarily give
me explicit directions; and at least one is always on hand to answer the omnipresent question: is this
going to electrocute me?

My talented peer group means that I have a wide variety of allies to call on as secondary and tertiary
human resources.

If I eventually decide to skin Chloe to resemble a real Jumping Spider, I have two peers who are
currently working with cloth and who may be willing to let me borrow their sewing equipment and
their time.

I also share my class time with an undergraduate student who is cross-listed in the same basic course.
The fact that we are working on similar projects allows us to discuss nearby component stores, online
resources, and the difficulties we face while prototyping or dealing with engineers.

a A Note on Human Resources
The most valuable resources we humans have when starting new projects is each other. No amount of
internet surfing, catalog shopping, or spec sheet hopping can replace the amazing pattern-matching of
the human mind. So it is that my most important (and often most neglected) advice to myself when
starting a new project is to query the expertise of the people around me.

This is often incredibly difficult. First of all, as a fairly independent person, I want to do everything
myself. This is even evident in how I will make my own textures, music, sound effects, and sprites,
when I could be using public domain works, a bad habit that often wastes time and slows down
development progress.

Secondly, I do not want to inconvenience other people or set myself up for disappointment by asking
them to help me out with projects they have no incentive to work on. With students this comes out
more frequently, as the demands of coursework frequently override everything else, including good
intentions and promises made at the beginning of a school semester.

Thirdly, it is not easy to ask good questions or get good answer. If I am a novice to the discipline of
interface design and I try to speak with an interface designer, the suggestion I receive is going to be
colored by the designer's current area of research, the blogs they've read over the last week, their
misunderstanding of my question, my own inability to ask the question properly, and the fact that they
don't remember what it's like to be a layman.

Lastly, the project I'm working on should necessarily be my very own. Allowing another individual to
help me could prevent me from learning important concepts. The very last thing I wanted was to lose
control of my learning process.

So it becomes important to my design process to write this note on human resources, to define the
line between sloth and synergy, and to offer counsel to all future incarnations of myself on what it
means to exist as part of a community.

No one designs, researches, or writes in a vacuum. We are all part of a greater community, and I must
rely on one another and build off of each other members' expertise to advance what the human race
is capable of. There is no shame in my 'reinventing the wheel' when I'm learning skills at the core of

my domain. But when it comes to obtaining a breadth of knowledge, I cannot get far if I try to learn
each and every piece of information depth first.

A friendly expert is able to help orient us, point us down a good path towards our goal, teach us new
tricks, help us parse terminology, and in general expand our understanding. In fact, frequently an
expert's most important utility is in helping us understand the options available to us, or to identify
the ground on which we are currently standing.

2 Deciding on the Board
The first thing I told The Captain was that I was interested in creating some kind of toy. I told him
about the Arduino kit and the Dragonboard, and then confessed that while I wanted to be the one to
pick my own board and define my own project, I didn't know what to look for on the board spec
sheets. I had no frame of reference; they were radically different from any other hardware I'd ever
purchased.

The Captain had me explain my basic idea to him, and the provided me with my very first foothold into
the realm of physical computing.

The thing I had to pay attention to, he identified, was memory. Embedded systems were very small
compared to personal computers, and frequently had little memory. He said that Arduino boards in
particular were memory poor, and that vision libraries were memory hungry.

I was confused by this revelation, because I knew the recommended kit for the class used an Arduino
board to talk to a Microsoft Kinect. He was able to quickly interpret that (most likely) the board in the
kit would remain connected to the PC, which would then do the heavy lifting of processing the Kinect
input. Either way, he knew enough about vision libraries to explain the Ardunio's paltry memory
wouldn't be able to handle my custom project.

Aha! A stepping stone. When I heard how widely boards could vary in memory, I realized that each
was customized for a specific purpose. Aftewards I was able to look at the Raspberry Pi and realize the
little board was specialized to be a miniature computer. In fact, many of the 'mobile phone' developer
boards, like Quallcomm's DragonBoard, had on board GPUs and interfaces for connecting screens. I
did not need any of this functionality.

What then did I need? How did tiny boards communicate with wheels and motors?

Turning back to The Captain, I explained my findings and asked him how boards could be used to drive
motors. He responded by ushering me up to his computer and quickly showing me a video in which a
single wire was used to communicate with a digital servo. I had never heard the word 'servo' before
except as a word fictional Transformers used in lieu of 'hands.'

A servo was a motor. What was an actuator? A port? A parallel port? A serial port? Why was the
Raspberry Pi so cheap? On question lead to another, and quickly I was on a path far away from being
confused over Arduinos and well on the way to identifying the board I needed. A discussion of all of
these attributes led me to go back and examine the DragonBoard's competition.

Both PandaBoard and BeagleBoard were described in a similar way to the Raspberry PI; they were
low-cost mobile development platforms, heavily immersed in an active open source community. The
PandaBoard and BeagleBoard were still outside my price range and far too large for a toy. I was a little
nervous. I didn't really know how to make a decision just yet. I hadn't yet seen the hexapod and I
didn't quite know what I wanted. Perhaps, I thought, going with the Ardunio kit was best. I'd at least
be able to do interesting things with augmented reality, and that was familiar...

To ensure I would be able to do what I wanted, I began researching robot tutorials and per-assembled
kits. I found guides that could run robots on Arduino boards, and was thrilled that no matter what
board I worked with, I was going to be able to build a robot.

The next day The Captain had me looking for a certain board which had gone inexplicably missing. He
wanted me to look at it because he felt it would be useful for my project, and described it as white.
After searching high and low, left and right, here and there, near and far, I opened up a box and pulled
out the board, only to find a second board hidden beneath it. White, with two long strips of black
ports, and without an HDMI port in sight, was a lovely little BeagleBoard BeagleBone. This was the
smaller and more focused cousin of the larger BeagleBoard, andhad previously gone undiscovered in
my research.

I was online within minutes, researching the strange white block in my hand. With its philosophy of
'bring your own peripherals', the BeagleBone was a credit card-sized, low-cost, powerful little
computer. It could do almost anything, depending on how I wrote my software and connected devices.
Where the average Arduino had kilobytes of on board memory, the Bone had megabytes. I didn't have
to be an expert in robotics to understand how significant a jump that was; that was the difference
between retaining a handful of string and running a full-blown 3D iPad application.

Even though I didn't truly understand the little board just yet, how it worked, or whether or not its
other attributes were aligned towards my purposes, I knew well enough not only to trust my own
research (the BeagleBone was a smaller and more mobile competitor to DragonBoard, and I had just
found a ton of literature that described the BeagleBone as an excellent multipurpose board for
beginning projects) but also The Captain's expertise. As he explained the board's serial ports to me
later that day, I realized just how how adaptable the little machine was, and that it was well-suited to
meet my needs. Trusting his judgment, I adopted the board as my own and brought it in to see my
teacher.

My teacher was the other side of the expert human resources coin. He had many questions about the
board; questions I couldn't answer but which provided me insight into what sorts of questions were
important to ask. He was concerned the lack of Arduino's super-convenient IDE would force me to
spend too much time on unnecessary 'engineering' components, but with access to both experts I was
pretty sure I could handle myself. Plus, that sounded like a direct challenge, and goodness knows I love
a challenge. He also wanted to know if the ports were parallel ports or serial, and if they could drive
analog motors or digital ones. I had no idea on the second question, and my understanding was still
too fragile to answer the first, but I was pretty sure the board had serial ports.

While the teacher gave a lecture on computer components like diodes and resistors, his questions

made me simultaneous nervous and yet brave; All of these words were so incredibly new to me, and
yet I was starting to get a basic handle on each of them. Realizing that I had absorbed and retained
new knowledge made me excited.

That was the evening I re-discovered the hexapod, and realized that almost everything I'd imagined
about my project was wrong. The only thing that was absolutely right was the tiny little board sitting
in the palm of my hand. The BeagleBone's serial ports were going to have no problem controlling so
many legs or running a complex movement algorithm. It was also going to have no problems handling
a detailed sound processing library. There was no time to be fooling around with uncertain memory,
complex work-around, or risking the unacceptable possibility that I might have to plug the robot in
and restrain its mobility.

I finally knew what my needs were, and the BeagleBone was going to meet them. Perfect. I could
wrangle with some difficult low-level programming and computer concepts in exchange for the ability
to build my robot. Cradled in the palm of my hand was Chloe's new brain; the most robust, versatile,
and affordable brain I could give her.

Time to get my hands dirty; there was a great deal I needed to learn about my board in a very short
period of time; and all those acronyms weren't going to decode themselves.

3 List of Parts

1. BeagleBoard BeagleBone
1. MicroUSB power cord & communication

2. White, Revision A5

3. 3.3 Volt system

4. Thorough documentation, community, and guides at www.beagleboard.org

5. Linux distribution

http://www.beagleboard.org/

2. Control board for direct interface with servos
1. Printed documentation in Chinese

2. 5 Volt system

3. UART driven, capacity of 32 analog servos

4. MicroUSB power cord & communication

5. Specialized for RC

3. Robot kit and servos
1. 18 analog servos, 3 per leg

1. 5 Volt

2. Chasis

1. Top and bottom pieces for central chassis

2. 12 lower leg pieces, 2 per leg

3. 12 upper leg pieces, 2 per leg

4. 12 shoulder pieces, 2 per leg

5. Assorted screws, nuts, cylindrical bearings, support bars

3. Printed documentation in Chinese

4. Windows PC
1. Windows 7
2. Running Oracle Virtual Machine

1. Running Ubuntu Desktop Linux distribution for ease of communication with board
3. Eclipse IDE

4 Additional Research
As I didn't want to make any decisions I'd later regret, I spent a day after discovering Chloe's board
and body before committing to purchasing either. I used these days to gather information, and learned

about competing or related products.

For example, In studying Beaglebone's 'open hardware' I came across the Raspberry Pi, which in some
lights could be seen as competition to the BeagleBone. They are some of the neatest, smallest, and
least expensive computers a person could get their hands on. However, Pi's are meant to replace true
desktops. They have a GPU and are meant to be connected to screens. There exists an add-on
module with serial ports and a joystick which makes them valuable as hand held gaming devices, but
they are not designed necessarily for driving actuators.

Getting the correct robot kit (or building one from scratch) was also a matter of solemn importance. A
hexapod robot (or an octopod, which would also be interesting) requires a certain number of legs.
These robots need motors that can support multiple degrees of freedom for two joints per leg. These
motors are also called, as I am learning, ‘servos.’ A perfect 'spider leg' would have three joints per leg,
but two seems to be the norm for hexapods. These legs are the most important components to the
robot kit, as there really isn’t anything else to the physical robot aside from the frame itself, unless
one starts to consider various sound, ultrasound, vision, or touch sensors. In a self-made kit, the
frame, or 'chassis' would have to be fabricated by a company in Hong Kong. The servos would have to
be purchased independently.

While I eventually went back to the very first robot kit I fell in love with, I looked at many other
options before making my purchase. For instance, I found a set of servos being advertised for Hexapod
robots at 3-5 USD a piece. This was too expensive for me.

I also looked at the Arduino Alumin hexapod kit; however I was already disliking Arduino at this point
in time, and the legs of this bot seemed fragile and susceptible to bending or breakage. One of the
reasons I picked Chloe's chassis was for the double tip of her lower legs.

After examining several similar kits, including ones covered in sensors with legs that were designed to
sense contact, I realized that the customizable, basic nature of Chloe's kit was what made it desirable.
I didn't need the distraction of all that additional functionality, and I would personal purchase any
piece I did need. I certainly didn't need an ultrasound detector just yet; I'd busy myself with getting

her to walk.

In my research I stumbled upon perhaps one of the most important of my discoveries, which was the
eerily realistic octopod Robugtix, made by the Amoeba Robotics Ltd. Robugtix was advertized as
running on a proprietary Inverse Kinematics Engine, which was what made it move so smoothly and
realistically. This will end up being a vital ingredient to Chloe, Part III once basic motion and sound
have been taken care of.

V Project Management

1 Documentation as a Design Methodology
For me, documenting my design process is a vital part of my design methodology that helps me
combat negative emotions like anxiety while providing me with an in-depth look at my progress and
the time it takes for me to complete tasks. It is because of this thorough documentation that I was
able to reconstruct my project log for the documentation phase. In fact, I would argue that all previous
documents I've ever written had been 'tampered with' by virtue of the fact that I wrote them only
with my end results in mind. This particular document is different, however, in that it preserves much
of the essence and feeling of what my exact development process was like.

2 Project Schedule
Chloe, Part I is held to a rigorous schedule laid out by the tight time frame of the ten-week quarter
here at SCAD. The syllabus allows for more time to work on Part I than it will for both Part II and III,
however a significant chunk of this time was spent deciding on a board and learning the raw basics of
how to interact with it.

Here is the schedule for Part I as per the course syllabus:

24 September – Project A assigned

27 September – Due: Project Ideas

3 October – Due: Project Pitch (formal)

8 October – Due: Prototype

10 October – Due: Documentation

15 October – Due: Presentation (Midterm)

3 Project Log
17 September – Day one and I am getting an early start thinking about my project. Why wait? I'm a
complete layman when it comes to physical components, and I need all the head-start I can get.

18 September – I explain my project idea to The Captain after preliminary research.

19 September – I meet the BeagleBone for the very first time.

24 September - I bring the BeagleBone in to class; it's the second class period and I feel ahead. Then
again, I did have a week to find the board I wanted. I'm pretty confident this is the board I want, but
the teacher asks a lot of questions I'm not sure how to answer.

Towards evening I see the hexapod for the very first time, and I know that's the project I want to work
on. I'm sold.

26 September – I am studying every pin and port of my board. It was an adventure just trying to figure
out how to start the Ethernet connection with it the first time! The board contains schematics and

other fun stuff. I do an Internet search on every acronym and write detailed explanations of my
findings so that I can remember the relevant ones. Afterward, I use my own words to explain what I've
found to The Captain in a few text messages, and he augments my explanations, validates them, and
helps with some terms I could not find.

27 September – I thoroughly explore two plazas north of Sham Shui Po's Cheung Sha Wan. After an
exhaustive search, I manage to locate three- and only three- shops that sell the types of boards and
components I or my classmate would need for our projects. I am very happy to have found them!

28 – I am still learning everything I can from my board.

30 September – Robot parts arrive! I have been working through the 'getting started' material
available for my board. I am still studying schematics, reading documentation, and all-in-all probably
getting much too prepared before getting my hands dirty. Now that the robot parts are here, I'm
hoping they will motivate me! Unfortunately, I have no instructions for assembly. I still take them out
and experiment with the motors.

1 October – I install a Virtual Machine so I can run Linux on my computer. I start it up and start
installing everything I'm going to need. The Ubuntu download alone takes forever. I stay up long into
the night trying to install a different Linux distribution (Ubuntu) on my board and then successfully
communicate with it. It takes forever for me to understand what I need to do to get embedded
Ubuntu on the machine, but when I do it ends up paving the way for me to understand a whole lot of
other things about my board.

2 October – The captain helps demonstrate how my servos will work by hooking them up to an RC
controller. I am a novice to Linux, so doing things like setting up eclipse is crazy.

3 October – Instruction for assembly of robot still have not arrived; I begin assembling the robot
anyway using two images of the bot and eyeballing it to guess at which screws are used where, and
which pieces had to be assembled in which orientation. I start with the shoulders because they are
easy to see. I realize the robot's name is and in fact has been Chloe in my head for quite some time. I
play with Linux in the evenings.

4 October – I assemble the shoulders and legs independently, but I do not yet join them together. The
screws for joining the servos to their respective disks will slightly distort the plastic, so I do not want to
install the legs until I have the chassis fully assembled and I have made some decisions about what I
want the range of the legs to be. It occurs to me that it is up to me how to install the legs, and that my
choices will determine the range of motion.

5 October – The instructions arrive. I've done everything right. What a relief. I assemble the central
chassis. I've realized there are two different orientations for the final leg segment; the servo can face
'down' or 'up.' The images and instructions for the robot all have the orientation built 'down,' but
from what I can see this causes the top end of the leg to bang into the shoulder of the robot. I
reconfigure one leg. I am concerned the leg may not be as strong in this configuration, so I will need to
wait until I can test it before reconfiguring or installing the other legs.

6 October – After frustrated wrestling with the BeagleBone for days trying to figure out why my
program wasn't running, I finally managed to execute a C program and get it's LEDs to light up as a
result. Yahoo!

7 October – I get the legs to move for the very first time. I am so happy.

8 October – I present my demo of the legs moving in class, and finish complete assembly of the robot
in class. Amusingly, despite the pains I took to ensure I didn't install the legs 'incorrectly,' the fact that I
built most of this robot with no instructions, and the careful calibration I did to ensure that all the legs
has the exact same range of motion, I actually installed the legs while the chassis was upside down.
Alas. Well, maybe I like it better this way!

9 October – I write the documentation for the presentation on the 10th

10 October – I present and submit the documentation.

11 October to 15 October – Debug problems with leg movement, set up the pinmux so that I can
access the legs with code instead of just terminal commands, and get Chloe to stand for the very first
time.

VI System Design
Chloe's system design is relatively simple at this stage. At the conclusion of Part I, she will exists at the
intersection of five components. These are:

• The virtual Linux development machine, which can communicate with her via SSH through
terminal and test her capabilities, program for her, send her code, and execute her on-board
applications.

• The BeagleBone, which serves at her brain. The BeagleBone is a stand-alone computer, and will
eventually be able to run without the need of the development machine. Several documents
detailing the BeagleBone's schematics will be included at the end of the document in an
Appendix. The BeagleBone currently runs an on-board embedded version of Ubuntu, which
was installed in lieu of its default Angstrom distribution.

• The control board. The controller board takes care of a number important functions for the
BeagleBone, acting as a 'shield' between the main board and the peripherals. It is basically a
communications hub that takes in instructions from the BeagleBone and supplies them to the
peripherals (the servos) as needed. It also allows me to translate between the BeagleBone's
3.3 volt communications and the servos, which expect 5 volts. The control board has no real

operating system or brains to it.

• The chassis (+ legs). The chassis or body of the robot, in addition to its legs, is designed to serve
as housing for the servos and boards, and also as the structural components of the spider.

• The servos. The eighteen servos are the muscles and joints of the robot. There are eighteen
servos which are connected to and powered by the control board. They are an integrated part
of the legs, holding together other structural elements at the joints. The servos cannot be
removed without disassembling the robot's legs.

The software behind Chloe's behavior at this point is current unremarkable, consisting only of a single
C++ document, and is expected to expand immediately and considerably upon the start of Part II, and
hopefully before the final presentation of Part I when Chloe successfully stands for the first time.

1 Implementation and Debugging

a Introductory Exploration of the Board and Its Abilities
I plug the BeagleBone in. At first only the power LED comes on, and Windows tries helplessly to find a
driver for it. After a small duration of time in which the USER LEDS refuse to respond, I slip the
MicroSD card into the board. Suddenly the machine comes to life, and “BeagleBone” shows up as a
drive under My Computer. Another thing worth noting is that I am at school, and the computers here
freak out feeling unsafe access might be occurring. I push “OK” and things seem to be working. In
order to proceed I will need to install the BeagleBone drivers; so I log out and back in with system
admin rights.

I am currently trying to get the ‘browsing’ capability to work. I don’t really understand it, but
apparently I’m supposed to be able to make an Ethernet connection or network over my USB? The file
on board my Beaglebone says that I need to eject the device to get this to work, even though the
Getting Started guide says this is only for old system files. I guess even though I have the new driver on
my development machine, this little blurb is referring to the files already on board the Beaglebone?
Alright! I ejected it and now it says we have an Ethernet connection. Headed to 192.168.7.2

I am now watching the slides on board the BeagleBone and looking up terms. My teacher
recommends Debian because it is an old well-established distribution oriented towards servers. He
says this makes it more desirable than say Ubuntu or Fedora, as they are more targeted towards an
end user desktop experience. QNX is a real-time (handles interrupts from hardware input immediately
instead of queuing them) operating system, very stable, that is used in mission critical operations. QNX
also has a tiny footprint. It is most suited for small, pure hardware operations.

What operating system should I choose to work with? Angstrom very small and scales down to devices
with 4MB storage. It has less storage space, and smaller memory footprint, but doesn’t perfectly
mirror standard behavior. There is less documentation for it, and debugging can be a problem. Debian
was recommended by my sister

If I stick with Angstrom, I get access to some useful tools for developing on my board. It turns out
there is a Cloud9 IDE which would allow me to use Bonescript (a variant of Javasript) to program
directly from the web browser onto my board. This is similar to the system Arduino uses and certainly
user friendly.

However, my past experiences in life have all pointed to the conclusion that the native language of
engineers is indisputably C/++, and that if one wants access to the funnest and juiciest libraries
available, the easiest way is to speak plain C. Marshaling between the languages can end up being a
real pain. Fortunately, I know after a quick survey that the libraries I'll need are indeed in C. As C is the
language I'm most intimately familiar with, and I have no particular interest in Javascript, the choice in
language is easy.

The documentation also mentions that it is particularly easy to cross-compile using Linux. I don't know
what that means, but it tells me there's a workaround to using Window through the program

http://192.168.7.2/

Netbeans. According to the documentation, Netbeans allows users to write the code on desktop, save
it in a location accessible to the Beagle, and then automatically compile it on the Bonee itself using ssh
and the built in compiler on the BeagleBone’s OS.

Er. What? Lots of terms, there. I mean I understand the majority of all of them, or at least I've been
exposed to them. I've been exposed to SSH through using Git, and I sort of knew there was a built-in
compiler on the BeagleBone... Maybe I should make myself a Linux machine to avoid this 'Netbeans'
thing? It says I can use GDB for remote debugging over ssh. Since I don't know exactly what that
means, I'll just have to make a mental check under, “I can use either Linux or Windows to debug
programs on my board.”

Looking at schematics of the board, I see things I don't understand. What is a PMIC Expansion Header?
This is the only strip of black ports I don't really understand, so I ask the internet about it. PMIC
stands for Power Management IC. According to the internet, these are integrated circuits which
manage power requirements of these host system. They are often included in battery operated
devices such as mobile phones and portable media players. Common voltages are 5V, 3.3V, 1.8V.
There’s a wonderful diagram of the chip itself on BeagleBone wiki, but I still have no idea what it really
means.

 The documentation and wiki mentions I need or have or have to update a kernel. That word is still
foreign to me, something I dodged around while installing MacOS on my laptop and which I still don't
really understand.

As I move to the next slide, I'm greeted with a long list of what I think are pins. Interesting! These are
how I communicate with motors and sensors, right? According to this documentation, I have two sets
of 46 pin headers. These pins are divided into P9 and P8 or Expansion A and Expansion B respectively,
which amusingly means the higher number is the earlier letter, and the lower number is the latter
letter alphabetically.

Long ways, on each side of the headers, I see the numbers 1 and 2 on one side, and 45 and 46 on the
other. I think this means that the pins are named 1-45 and 2-46 and one side is odd and the other is
even. Yes! That is the case. And the numbers across from one another between P9 and P8 don't
necessarily have any relationship. These 'headers' are just a place to attach all the wires; they're not
organized by purpose or function.

Let's see if I can research these different pin types and learn a little bit. What's the first type of pin the
documentation mentions I have? 2XI2C pins (That's the latter 'I', not the number '1', for reference). By
referencing the internet, I learned that it's named this way because it's an inter-integrated circuit bus
(two 'I's). It is apparently ssed for attaching low-speed peripherals to an embedded system, or
communication between components on same board.

Looking at my board, I can see I have connections labeled I2C1_SCL, I2C2_SCL, I2C1_SDA, and
I2C2_SDA. These also have a pin number and a connection number. What do the acronyms mean? I
search farther. Apparently any I2C connection is made up of two primary wires, a SCL and an SDA.
These stand for Serial Clock Line (or Master) and Serial Data Line (or Slave) respectively.
So, this is a serial port. Alright, I get that. What is it used for, motors? According to this it is useful

where simplicity and low manufacturing cost are more important than speed, such as reading
configuration data, system management, monitor colors, volume, reading hardware monitors and
sensors like thermostats, reading real-time clicks, and turning on and off the power supply of a
component. One of their big advantages is that a micro-controller can control a huge network of over
a hundred devices with just two general purpose I/O pins and some software.

Not motors then, I guess? Ah! After a quick online check, I find a 'servo driver module' which I assume
is some kind of control board. This would connect to my BeagleBoard and allow an I2C pin to control a
large number of servos. The Captain has already helped me place the order for my hexapod and
control board, and now I think I know sort of how my control board will work. The board even has a
wire for control, power, and ground.

By now I think I know a bit about I2C ports so I look at the next thing on my list of understanding:
5xUART. Hmm. What is that, University of Art? Unlikely. It stands for universal asynchronous
receiver/transmitter. Its job is to translates data between parallel and serial forms. Data format and
transmission speeds are configurable. It is used for serial communications over a computer or
peripheral device serial port.

Eh. I heard the word 'peripheral,' but I also get the sensation that this has something to do with
networking or wireless. As the online articles don't mirror one another, it's difficult for me to tell
what's being said about the UART that also applied to the I2C, or vise versa. For instance, it says the
UART Takes bytes and transmits in sequential fashion; then at the destination a second UART re-
assembles the bits into complete bytes. If I'm reading this right, that means that a UART can't talk to
anything other than another UART; which means whatever you're talking to has to have the same
interface installed. Okay. Is that... odd?

A UART either has some hardware or software that does a lot more than the I2C as well. According to
what I've read, the UART contains a clock generator, input and output shift registers, transmit/receive
control, read/write control logic, and possibly some buffers and FIFO memory. It can detect errors and
mind some of its own business so that the CPU can spend more time on critical real time tasks. Again,
while all this sounds present, all I can hear in my head is 'serial' and 'how exactly is this different from
IC2?

I'm lucky The Captain explained what 'Half Duplex' and 'Full Duplex' were while we were walking
yesterday, because those terms have just cropped up. According to this, a UART can be Simplex, Half
Duplex, or Full Duplex, and it is used when compatible interfaces are required for things. The examples
it gives, like RS232 and RS485, confuse me. I guess you don't learn a lot when you enumerate your
options and facts; you really need to see something in action to be able to use it, or have it explained
in a narrative way relevant to your interests. It does mention that UARTs function well in electrically
noisy environments and over 'long' distances. I'll try and keep that in mind.

Based on what I've seen, it looks like both UART and I2C can be used to control peripherals like servo
motors, and a quick search proves that this assumption is correct. I can also find UART control boards.
At this point I realize that you can use any signals for anything you want; the questions are 'what do
you need to do?' 'what quality do you need? and 'what are the lowest cost means available to you for
doing it at that quality?' It seems to that UART connections either exist in or can be used with direct

connections, wireless, or USB.

I finally find a forum which is able to explain to me on additional big different between UART and I2C.
UART is design for peer to peer communication, whereas I2C is for general broadcast. In short, in order
for UART to talk to numerous peripherals, it needs a 'shield' or control board between it and the
peripherals to decode and split the signals. I2C, however, can talk directly to a very large number of
peripheral devices, as long as they all have a means to receive its input. However I2C, while designed
to reduce number of pins and gate count, isn't in as widespread use as UART, and many more devices
are UART compliant.

I think I finally get the difference between the two. I just saw a servo with a circuit embedded into its
side. The servo itself would be able to decode a signal from I2C without a control board in the way.
However if my board has no integrated circuit, a control board is necessary anyway. That's why my
hexapod kit comes with one.

There are some other pins, but now I'm starting to get the hang of how these work. They're just
different standards, different protocols that have been created to facilitate different things, and which
all have different devices created for them and different adoption rates.

For example, SPI stands for Serial Peripheral Interface. It operates in full duplex mode, which means
it's good for two way communication, and takes 4 wires. It has higher throughput than I2C or SMBus,
and protocol Flexibility. It also has simple hardware interfacing, lower power requirements, and
doesn't need precision or a master clock. It also doesn't need a unique address, but unfortunately it
requires lots of pins, can only handles short distances, and is prone to noise spikes with no error-
checking to fix it.

Then there is the CAN, which was really hard to research because 'can' is a very common word. It
stands for controller area network and is a vehicle bus designed to allow microcontrollers to
communicate each other within a vehicle without a host computer. It uses a message-based protocol;
specifically for automotive applications, aerospace, maritime, industrial automation, and medical
equipment. It assures message delivery, non-conflicting messages, time of delivery, low cost, EMF
noise resilience, redundant routing, and other characteristics. Based on what I'm reading, it's
incredibly robust- which must come with a tradeoff somewhere.

Although this sounds like the type of thing that could control a robot, I don’t see any examples of it
working with servos. From what I can see it is consistently used with vehicles and medical applications,
which means it is present here more out of a need to make the BeagleBone widely useful for a large
variety of design applications.

Lastly there is also a large number of GPIO ports, which I am to understand mean general purpose
input and output.

2 Moving On From Pins and Headers
By now I am starting to build up a vocabulary of terms that I can use to describe my board and its

capabilities. I hardly understand everything just yet, but I'm tired of reading and parsing through and
conducting searching on documentation. This phase of my relationship with the board is over and I'm
ready to move on. I shouldn't undervalue what I just did over the last few days, however, because the
things I can now talk about in relation to my board have expanded tenfold. Each confusing term and
lack of clarification gave me more questions to ask of The Captain and the teacher during our breaks,
and each added further to my understanding.

Looking at all the pins helped me understand a lot more about my board. It also allowed me to
understand what I was getting from my 'shield,' that is, the control board for my servos. I2C shields
were more expensive which is probably why they were not packaged with my kit. What I have in hand
now is a UART-driven shield with the ability to drive up to 32 servos.

Now that I have the robot's physical body, I have to get the board to a development state. That means
installing the operating system of my choice, setting up the development IDE, and going through one
programming loop so that I can get an LED blinking of my own accord on screen. Because I am
choosing to work with sound processing, I will not be using the Angstrom operating system, but
rather I will move to Ubuntu.

I ended up choosing Ubuntu at the Captain's recommendation. He explained that it would be possible
to move the desktop GUI, if it was even bundled with the embedded distribution for my board, and
explained that anything I could run on Debian, I would be able to run on Ubuntu; but there would be
more libraries and other resources available for my use because Ubuntu is more prolific.

Still there are a few more things I need to understand before I can dive in; because I don't know how
to dive in! I need to know what it MEANS to start developing on the board. For instance, I need an
operating system. How do I install one? There are also some slides of important information on the
board that I should hold on to, because installing Ubuntu will render these things unavailable to me.

3 The Boot Process
The next intimidating slide I've come across and need to understand is the “Typical BeagleBone boot
process” slide. It's very fortunate that I have experience with installing Mac OS on a Dell laptop!
Basically every computer needs a booter. This is a very low level program that does little more than
offer preliminary instructions on what to do when the computer is turned on.

a Step 1
According to this slide, step 1 of the boot process is: ROM loads u-boot SPL (MLO). Not sure what all
the acronyms are for, but based on step 2, this is a prelude to the booter (and not the booter itself).
The default location is /media/mmcblk0p1/MLO, which is gobbly gook I only need if I have to go track
it down and fix it or install a different tool. “It performs external DRAM configuration,” means that it
basically makes the system memory available for use.

b Step 2
This step says that u-boot SPL (MLO) loads u-boot, default location at /media/mmcblk0-1/u-boot.img.
Img files are, to my understanding, bootable, and they're what I'll be writing with Win32DiskImager, a

program recommended to me by an earlier BeagleBone slide.

c Step 3
This step says u-boot executes default environment/commands. I am guessing this is basically a
configuration step, based on the fact that the default location of what it's talking about is
/media/mmcblk0-1/uEnv.txt, which suggests a text or config file. It says “By default, 'uenvcmd' variable
is executed. I don't know what that means.

d Step 4
Commands load kernel. The way The Captain describes an operating system is as follows: the kernel,
the shell, and the GUI. The kernel, as he describes in layman's fashion, handles the main and most
base-level 'loop' that keeps the entire system running. Like main(); in a C++ program or my actionscript
gameLoop();s . The shell he describes as the part that is able to interpret commands, such as the
terminal in a Mac; commands like ssh, git, mkdir, cd, l, etc. The primary GUI are the visual components
that separate the user from having to interact directly with the shell, and more or less provides mouse
support.

e Step 5
This step is 'kernel reads the root file system,' which I interpret to mean that this is the step in which
the kernel determines what to do with the rest of its life. This is where programs are scheduled for
execution. Wow, that sounds so morbid out of context...

4 “Baseline Software...”
I'm starting to get slightly nausous with too many new terms. Looking at the linux page of the
BeagleBone documentation, I think the author wanted to inform me on the details of every tiny nitty
gritty step that could be used to cobble together a Linux distribution on the BeagleBone from scratch,
but all he succeeded in doing was making me feel like he'd given me an ulcer. This documentation is
way too heavy for a getting started guide. I suppose the author assumed only an expert would want to
change their distribution from Angstrom? Why? Just because I'm not familiar with Linux or embedded
systems don't mean I like to go with the flow, here!

I see the wiki linux page contains examples for installing a toolchain, building a BeagleBone MLO and
u-boot, building aBeagleBone3.8-rcX kernel, and building a kernel module (which they made a hello
world with). But I have no idea what any of that means.

a u-boot
It is hard to know whether or not to capitalize 'u-boot' when it starts a sentence, as it is a proper noun
whose first letter is intentionally left lowercase. Well, anyway, the first piece of software is u-boot
itself, which can be obtained from a git repository. Something that should be noted is that u-boot
hasn't had a 'release' since 2009, but it's had commits made to its project as little as 10 days ago,
suggesting more support is being added, and bugs are being fixed. There is a repository for
BeagleBone specific u-boot.

b Linux Kernel
Sounds important! I probably already have this, as Angstrom is a Linux distribution, but it's still a good
idea to keep track of where the Beagleboard-patched kernel is.

c OE-core based BSP
You've got me, it's not clear to me what exactly this is. The link the documentation gives leads to a
place that says: “Layer containing TI hardware support metadata” or “meta-ti.” TI, or Texas
Instruments, is the provider of the BeagleBpme processor. Unfortunately that's not exactly enough to
make an informed description of what this is.

OE means “Open Embedded” which is apparently in collaboration with “Yocto Project,” which is a
Linux Foundation project, and which I am also seeing in the same sentence as “Yocto BSP layer for
Beagleboard.org platforms.”

Aha! I found a blurb about Yocto: The advisory board includes members from several key silicon
vendors, embedded Linux suppliers, and the OpenEmbedded community, including representation
from TI, Intel, Mentor Graphics, MontaVista, TimeSys, and Dell.

Now I've found a definition for BSP: Board Support Package development tools for embedded
platforms. Alright, so let's work backwards. There is a community called Open Embedded which
created a support package for the embedded system I'm using: The BeagleBone, and this 'BSP' takes
the form of a layer of metadata that describes the Texas Instruments hardware on the board.

d Mentioning “Linaro”
Linaro is something the slides mentioned just before explaining Yocto. Its blurb says that Linaro is a
not-for-profit engineering organization consolidating and optimizing open source Linux software and
tools for the ARAM architecture. The slide says that it provides a compiler, debugger, profiler, kernel,
and middleware, and validation of efforts done with Ubuntu and Android.

Aha! I have found out what Linaro does that I should care about. I went to downloads and saw “Linaro
Engineering Builds” which led to an FAQ about what a “LEB” (Linaro Engineering Build) was. According
to this, LEBs are full system builds of popular Linux open-source products that come with Linaro
improvements per-integrated; currently products supported by the LEB program are Android,
OpenEmbedded, and Ubuntu.

It goes on to stay that Linaro provides engineering builds that come with significantly different
priorities and requirements than the product and end-user focused distribution business. As such they
focus heavily on middleware, kernel, and hardware enablement topics, and deprioritize safe upgrade
paths, security, and stability.

There are two ways to get a Linaro build on your hardware, says this additional getting started site
under Linaro → Engineering. The fastest way is to grab a milestone image and “dd” it to an SD card.
(What does that mean? Direct download? Dragon dance?) These milestone images are pre-built using
common combinations of hardware packs and root file systems. Ubuntu Desktop images include x11-
base hardware packs, with the exception of Beagle. There is in fact a Beagle Ubuntu Desktop build

under Oneiric → Ubuntu-Desktop. Customization is explained on their wiki.

However, the “BeagleBoard-xM is one of their release platforms,” but not the BeagleBone. This
explains too why Linaro offered a Beagle Ubuntu Desktop distribution for an embedded system; the
BeagleBoard-xM has more functionality than the BeagleBone.

VII Switching the Operating System
By now I have done a great job of inventorying what the BeagleBone has to tell me about itself;
however I still don't feel much closer to understanding what I should do next with the board. Feeling
slightly lost, I know that the next big step is probably to get my Linux distribution of choice on the
board. This will be a big step in my learning process, and a difficult one, but I think it's important. I talk
to The Captain and he agrees.I start off with an online search...

1 It Starts...
I've installed Mac OS on an old Dell Laptop before, so I've had my share of Terminal-related difficulties
and hacking. Still, starting off with the idea that I want to install Ubuntu on an embedded system is like
jumping straight into the middle of an ocean with no idea which direction is north. What do I need?
Where do I start? I understand some of the terminology, such as 'booter,' but every resource I look at
seems to conflict with every other resource.

Do I need to compile my own toolchain of... what? Huh? What does that even mean? Do I have to
update the booter? How? Does the booter come with the distribution? Why do I have to package the
booter with the kernel with the... isn't there an installation for this? How would I possibly run the
installation? Do I do it with the USB plugged in? With it plugged in and ejected so the Ethernet
connection is running? With just the SD card plugged in through a reader? Do I have on board MMC
memory like the BeagleBone Black? What do all these commands do?

Mm. Yeah, this is going to be a painful learning experience, I can tell.

On the other hand, I was prepared for that. So while biting down on my temper, I begin the arduous
task of combing through and comparing strange new information. I try to get at the root of what it is
I'm trying to do, and getting frustrated that this often conflicts with what tutorials are attempting to
teach me. Each one really does have something to teach me about my task, but each also comes with
plenty of garbage I need to weed out. With the search query “BeagleBone Ubuntu Installation -black”
still bringing up plenty of BeagleBone black guides, I have to make guesses about what applies to me
and what doesn't.

One of the first things I realize I have to do in order to lessen my headaches is to get Ubuntu-Desktop
installed on my development machine. I can do this through a virtual machine, so I go and download
Oracle VM VirtualBox to help me.

Part of the reason I chose this route is that most everyone technologically savvy enough to be
installing Ubuntu on their BeagleBones is already running some distribution of Linux, and so most of
the tutorials are postured from that angle. I can find Angstrom tutorials from the Windows host
machine perspective, but it is too difficult for me to tell what in these tutorials applies to me and what
doesn't from this stage.

Another reason I choose to use the virtual machine is that familiarizing myself with Linux on one end
of the conversation may help me with Linux on the other end. A third reason is that talking to the

BeagleBone on Windows requires more workarounds and side programs, and talking to the
BeagleBone on Linux is easier and more straightforward.

And, lastly of all, one final reason I choose to install the virtual machine is because I feel like I have
absolutely no idea what I'm doing, but I need to start somewhere, and I have a tutorial sitting right in
front of me that starts off telling me to install one.

2 “Screen”
Things do not go as I had hoped. For hours I debug why it is the BeagleBone is unsuccessful in
virtualizing two USB ports. At first I assume the two USB connections I see are the two ports, and I get
confused about why the second one isn't 'working.' Then I realize one of the USB connections is
supposed to manifest as two all on its own. I type in the command “ls dev/ttyUSB*” over and over
again, with Ethernet mode on and off, having plugged and unplugged and toggled various things, but
instead of getting a USB0 and a USB1, I get only the USB0. Typing out the tutorial's command 'screen'
on this USB0 yields no results. I'm stuck.

I try a number of other tutorials, jumping around the net and surfing for answers to countless
questions I barely know how to ask. Because I don't know what I'm doing, I'm not even sure if my
board has MMC memory or if it has a user button or if it can be flashed. I end up following the tail end
of a non-applicable tutorial, back-tracking, side-cycling, and all sorts of other fun travel-related words.

I'm frustrated, and I go back and take a deep breath and start looking at the tutorials from square one.
I give up on the ones from the wiki page, which cause me no end of stress. They tell me I need to
update bootloaders and pack them with kernels and... yeah we'll save that for a rainy day; I'm not sure
what exactly is happening on that instruction page, but deep down I'm pretty sure it's telling me the
long-winded, round-about, 'customized' way of doing things (Linux is a lot of do-it-yourself), not the
way I truly need right now. At the end of my patience, there are a thousand routes to go down, and
this long, complicated, and poorly-described (for a beginner) tutorial is not the one for me.

3 Retrospect – Past Tense
It turns out I was right. In looking back over a tutorial I thought required me to already get past the
'screen' instructions, I realize that the instructions are most likely working with an SD card that has
been plugged in via a simple card reader. The reason I couldn't tell this earlier was because I was
unfamiliar with basic Linux commands. As I'd never seen 'apt-get' before, and didn't know what
packages were, I couldn't recognize that the tutorial's very first command was downloading some
useful tools onto Ubuntu-Desktop, not interfacing directly with the embedded machine.

At last I recognize the tutorial for what it iss. The instructions are for BeagleBone Black and involve
flashing MMC memory, but I have read somewhere that the Black can boot from MMC or Flash
memory; and to me that means my good old fashion vanilla BeagleBone might be able to boot from a
card prepared in this fashion. I just have to hope that what the tutorial teaches me to load into the
card, exists in such a state as it doesn't need to be in MMC memory to be bootable.

After struggling with trying to figure out what distribution to try and where to download it from, I
eventually manage to get a version downloaded and installed onto the SD card. Eureka! I plug the SD
card into my board and plug the board in. Everything shows up differently! The installation succeeded!
The very last instruction on thetutorial was to ssh to the board...

Uh oh. What now?

4 Finding Out the IP Address, in Retrospect
I think I must have blacked out, because I have no idea how I eventually figured out what my board's
IP address was. I currently know that typing in ssh ubuntu@192.168.7.2 gets me to where I need to
be. The Captain suggests that the BeagleBone's Angstrom distribution configured the IP address into
the part of the board responsible for setting up the virtualized USB ports and Ethernet connection,
and that the new Ubuntu distribution simply didn't overwrite this IP address.

Therefore, it is likely that the IP address that worked for me was in fact the same IP address I had
originally used to find the BeagleBone in the browser, and that when I accidentally navigated to this
location, and realized the BeagleBone was there, I tried ubuntu@192.168.7.2 and realized it worked,
and then was overcome by an exhaustion that wiped all memory of this from my mind.

After hearing this explanation, I went and checked to find that the BeagleBone had indeed always
been at 192.168.7.2. I make a mental note: Do not program past 2:00 am unless undesirable
consequences.

However there is likely another way to find out my board's IP address should it ever change in the
future. By typing in ifconfig on the virtual machine end of things, I can see that my et1 connection has
an inet address of 192.168.7.1 and a Bcast of 192.168.7.3. This leaves only 192.168.7.2 as a space
suitable for my board to reside in. Mystery solved!

After I ssh-ed successfully to the board, I tried unsuccessfully to ping www.google.com until at last I
realized it was time to plug in the ethernet cable and that my USB did not provide access to the
internet, despite the fact that I could connect to my board via internet browser.

5 Reflection on Installation
With me at such an entry level to all of this, a lot of what I have to do is by educated guess. Anyone
who has worked with physical devices or Linux could have made these decisions instantaneously,
without thinking, but for me it's like treading through a thick soup. So many questions are unanswered
and so many 'obvious' decisions have to be made with little more than intuition. And in many cases,
intuition is wrong!

However, each time I make a guess, I learn.

By the time of my recording these events, I can now follow any similar tutorial for any physical device
without batting an eye. I know that 'bootable' means 'bootable' and that the only question is whether
the architecture of the processor can support the kernel's low-level instructions.

 Basically, the kernels for PC processors and embedded systems running on ARM architecture are
different, and those differences are what differentiate between desktop and embedded distributions
of Linux.

The difference distributions of Ubuntu are managed by individuals in the open source arena, people
who love boards and love technologies and pack up all the ingredients a given board needs in order to
run a Linux distribution on them.

VIII Stage Two: Cross-Compiling
I found an article which goes into lovely detail about why cross-compiling is necessary, and now that I
understand how PC processors and ARM architecture machines are quite different, I can digest the

mailto:ubuntu@192.168.7.2
mailto:ubuntu@192.168.7.2
http://www.google.com/

basic premise that 'normal' compiling breaks down programs into instruction sets for PC processors,
and I need to set up everything to compile to an instruction set for my embedded machine. I can also
comprehend that while it would certainly be possible to compile on board the BeagleBone itself, my
PC has a lot more processing power to get the job done faster.

1 Setting Up the IDE
The IDE I will be working with is Eclipse, which I initially believed was unfortunate as I have no great
love for Java and I much prefer the tools available through Visual Studio. Perhaps I associated Java
with a bunch of confused programmers who never successfully learned C++ in my undergraduate
classes and believed Java was the proper language to write triple A games in. Or maybe I had mentally
associated Eclipse with Dev-C++, the ancient and monstrous creature I was forced to use during my
undergraduate degree for writing basic C programs.

Whatever the case, my trepidation was unfounded. It is clear after downloading the program that
Eclipse has both aged well and continued to mature, and while it might not be my familiar Virtual
Studio, Code Blocks, or Mono Develop (Hey I have to work in Unity3D a lot), it is nevertheless quite a
respectable, acceptable, and plesant-to-gaze-upon creature. I have resolved, therefore, to like it.

There were also some useful commands I have to enter now that the installation is done. I must “sudo
apt-get install gcc-arm-linux-gnueabi” to get the correct compiler, following shortly on the heels of a
“sudo apt-get install eclipse eclipse-cdt g++ gcc.”

I then go through the steps provided by my lovely tutorial, which details how to use the different view
to talk remotely to my BeagleBoard and then work with code on my machine. I set up my debug
configuration and my compiler settings (using the arm-linux compiler instead of the default gcc and
c++)

2 Here we go again!
The first time I try to follow the tutorial, I can't seem to get the errors to stop. I have a feeling this has
to do with the options I picked when setting up the program. See the tutorial told me to select 'Hello
World' and whatever setup I wanted. However while I was looking at the interface, I saw their was an
option for 'Cross Compile' under almost every option but the 'Hello World' one. I clicked on the Hello
World program anyway, and no matter what I do it just won't compile.

It has trouble no matter what I #include at the top, be it iostream for cout or the corresponding .h for
printf. All I want to do is print some text to the screen! Based on the fact that it can't 'resolve' the
symbols, I think it's failing to find the libraries. Still, this shouldn't be so hard. That's it, I'm switching.
I'm going to create another project, a blank C++ for Cross Compiling, and then I'll drag the main.ccp
text file into it!

Alright, this is going much better. I'm not getting any errors on my side anymore. I've created a second
project just as I said I would and I pulled over the main.cpp. There were a few bugs here and there but
I've smoothed them out. It doesn't seem like my debugger wants to work, however. It keeps
complaining that its suffering errors, failing to launch... arg.

Browsing through my board in frustration in the remote view gives me the first glimpse of my
compiled program nestled safely in the confines of my /home/ubuntu/ directory. Wait a minute! How

did it get there? Aha! It is the remote debugger that is broken, not the compilation!

I SSH to my ubuntu directory and quickly try to run the executable, but I get a strange error. The
computer says it cannot execute binary file. What? Why? At first I assume this is a problem back with
iostream, and I go back and try to debug. But as the hours go by I wonder if this is a problem with the
compiler. I start looking for all the libraries in my Linux installation, and where they're located. I look to
see they're being properly included in my build. I search the internet for bugs, but for some reason I'm
just not finding anything.

3 It Actually Takes a Very Long Time To Solve This
It actually takes a very long time for me to solve this problem. On the way I learn all sorts of
commands. I learn cat, and file, for example, but these fail to tell me any information. File tells me
that I have a 32-bit ARM, dynamically linked non-stripped binary executable. As I look across the
internet it tells me all sorts of things, like that the most common cause of my error is that I'm failing to
compile a 32-bit program from a 64-bit system. My PC is 64-bit and so is my Linux distribution, so for
awhile I believed this. Then I realized it didn't make any sense.

Secondly the internet was concerned that I had created a non-ARM distribution, but armed with the
knowledge that I hadn't failed to product the 32-big program, and that adding the string-m32 to my
builds hadn't changed a thing, I was able to more quickly and easily disregard this as inapplicable to
me. Arg. I try nonsense. I include things that are already included. I try small variations. I click multiple
different parsers.

The surprise ended up being the 'dynamic.' Once, in an attempt to get things working, I had included
the flag -static at the end of my build. However, doing so caused my terminal window to hang and
eclipse to crash. When I finally rebooted everything, I rand the program and it said there was a
segmentation fault.

Exhausted, five minutes later I couldn't remember that this 'segmentation fault' was the only
indication I'd had that a program had actually run successfully, and that it hadn't run succesfully in any
other build. Later I was compelled to try the -static flag again. Again it crashed everything, and again I
got mad, until after hours of watching the build fail to launch I got the second 'Segmentation Fault'
error. Wait a minute.

If I'm getting a segmentation fault, that means I'm accessing out of bounds memory. That's weird,
given that I'm using a printf and cout statement interchangeably, but that means my program is
running. Hold up, hold up, back track! What does that mean!?

I learned to use an important command, readelf, in a different way. For some reason all these binaries
are in 'ELF' format, and while I don't know what that means, I can tell basically what 'readelf' is going
to do. Before I had been using readelf -a; now I use readelf -l in conjunction with the online resource
that told me about the static/dynamic problem. I see a line the tutorial told me I would see:

Requesting program interpreter: /lib/ld-linux.so.3.

I quickly navigate to that location and lo and behold it does not exist! But guess what does exist?
/lib/ld-linux-arm.so.3. Holy crap! How do I link this? I find a command called 'ln' and use “sudo ln
(target)(symbolic)” or “sudo ln ld-linux-arm.so.3 /lib/ld-linux.so.3” and I
recompile my program dynamically.

Segmentation fault. It ran! Also, I think it is having a segmentation
fault because I typed int main and didn't return anything. Man, is
that all it really would have taken for me to notice the program was
running earlier? Arg.

Wow. I succesfully cross-compiled, despite not even knowing what
'cross-compile' meant more than 24 hours ago. I feel great.

4 Onto the LEDS
At first I'm not sure where one begins to light LEDs. I ask around and I find a bunch of people lighting
external LEDs. Okay, that's not what I need. Keep going. Eventually I started asking BeagleBone specific
questions, realizing that there has to be something in the hardware, no doubt, that know exactly
where those LEDs are. After my teacher's lecture on Linux distributions, I'm starting to understand
there's a component of every distribution that's specific to the architecture; no doubt that's where my
lights are.

I find an Angstrom distribution that puts one of the lights at /sys/devices/platform/leds-
gpio/leds/BeagleBone::usr0/. I manage to find them at a similar location, and find
/sys/devices/ocp.3/gpio-leds.7/leds/BeagleBone:green:user0 /

This can't be the only way to locate files; I hunted and pecked through every directory, and half of
them are named the same thing. Let's see. Ah! I can use find -name “BeagleBone:green:usr2”
2>/dev/null (where that last part destroys error messages and logging) to find the LEDS. Surprisingly,
there's a more direct route: /sys/class/leds/BeagleBone:Green:usr2.

This is useful information for me to remember. After all, the Angstrom and Ubuntu distributions are
still both Linux at their core, and so anything that applies to one should be vaguely applicable to the
other.

After finding the LEDs, I 'm trying to change their brightness as a tutorial tells me I can. Not working.
Grr.

Whoa. My moment of understanding comes from elinux.org in an exercise about flashing an LED. The
website states, “The easiest way to do general purpose I/O (gpio) on the Beagle is through a terminal
window and a shell prompt. In Linux, almost everything is treated as a file, even things that aren't
files.” Elsewhere I see this called a sysfs interface. Suddenly I get it; I can send commands to my board
by writing into files! And that means something like an fwrite had to be used from C to accomplish the
same task, right? Yes, I'm starting to get this!

Finally I try a sudo -s, followed by an echo 1>brightness. Then I see a better command, echo 1 | sudo
tee brightness. Both work! Someone explains on a forum why my sudo echo 1 > brightness didn't

work; apparently sudo gives permission for echo to do its writing to buffer thing, but not for the
pushing to the file to actually occur. Or something like that. The 'tee' I don't understand, but it gets me
past that restriction.

I toggle the LEDs on and off. I am so victorious.

5 LEDS in C(++)
The LEDs now make sense to me, and I'm ready to use a sample fwrite
tutorial to toggle them. I write up the program pretty fast. First I
make a duplicate of my Hello World program, which runs. I delete it
and continue; I even use strings and other C++ conventions to pretty
it up. Maybe I'm feeling cocky, but a voice in my head tells me I
might regret all my Object Oriented Programming if it doesn't run,
and...

...and it doesn't run. Okay, what's wrong? I'm not compiling any
differently than I was before. “Failed to execute MI command target-
select-remote. Packet reply was too long.” That doesn't mean
anything. I play with some values and try to get the program to obey
me, but it doesn't work. I get another error: “Filesystem input or
output error. “

I try to put the mystery of these errors together, but they don't
make sense to me: “readchar: Got EOF” or “remote side has terminated
connection. GDBserver will reopen the connection.” An online tutorial
suggested to do a manual debugging launcher, but after trying that I
just got more frustrated and more errors.

I begin stripping down my program to see what part was offending the
board, but I can't find anything. I to run as root on the board, and
see that sometime in all the hubbub, a LEDHello program has finally
appeared, though I'm not sure when or how. Heh, maybe it happened on
the second thing I tried! It isn't executable. Chmod didn't seem to
want to let me change the permissions either. I wonder if perhaps the
chmod line in the compiler settings is what messed everything up?
It's the only thing different from my last program.

Well, if it's the only thing different, I guess it must be the
offending line, right? I delete it. Ahhh, a big red error I'd been
glimpsing for awhile rears its head after I delete the chmod line:
warning: Architecture rejected target-supplied description. What on
earth does that mean? I navigate to the little program, which
notifies me that it definitely believes itself to be ARM. Wait! Is
there a possibility that this is just the debugger failing to
connect? That the two machines are having a 32-bit 64-bit or
communications fight or something?

Perhaps my 'non-executable-executable' is actually executable?
Perhaps its executable permissions just weren't properly set because

of my botched chmod line!

Yes! Victory! Okay, so the debugger is absolutely failing to hook up
to the remote end, but at the moment I'm not sure it's my biggest
problem. I can always try to solve that one later. The thing I should
mention is that when I failed to chmod -x ./LEDHello, I wasn't sure
what to do. I ended up using the remote SSH file exploration GUI in
Exclipse to navigate to LEDHello. Right clicking on it gave me access
to permissions, and nothing was set to executable (which explains why
LEDHello was showing up white instead of the green I associate with
executables in the terminal).

Now, even though the debugger is failing to hook up, I've navigated
to LEDHello over the SHH on the terminal and ran ./LEDHello
successfully. HUZZAH.

Hmm, it failed to open the files; I'm guessing that's because an odd
character snuck in. I bet it has to do with '/' in a string. Oho, it
turns out the problem is actually my char(i) for turning a uint to a
char. Looks like I have to do a more complex conversion than that, as
casting “1” to a unit yields a value of 49 and I bet 0 is up in the
high fifties. That means I can't use this technique. I know of
another way, involving string streams, but I don't really like it...
Perhaps I should rest for now.
6 The LEDS Shall Work
I begin debugging on October the 7th by trying to figure out what was wrong with my NumberToString
function. The autocomplete features aren't very helpful, so after a moment of internet searching I
realize I need to add in a #include<sstream>. Now I'm able to convert numbers to strings, yay!

But My program still won't run. It doesn't think the file exists- ah, I accidentally put
'BeagleBone:Green:usr' in both the directory and file prefix! Hmm but now it still claims its failing to
open the file.

It turns out that “r+”, while working for other people everywhere, isn't what this program wanted. I
change it to rw+ and now the file opens.

 I discovered this by writing a function called smallTest in which I simply opened a file and reported
back my success or otherwise. The first thing I decided was to test whether or not the C++ type 'string'
was letting me down. I started by opening a file specified by a string variable or even a char* like the
tutorials had done, I went with a straight string literal, figuring this would eliminate the largest

Unfortunately, my file would still not open. With the literal removing most room for error on that
front, the only other input I could change was the “r+.” Changing this to “rw+” reported a successful
opening of the file. Seeing this, I copied my findings to the other functions and got them all to
successfully open their own files.

Victory? No! Strangely enough, the LEDs still continue not to respond.

Using the terminal, ssh, and linux commands, I echo about on the trigger and brightness files, and
learn to use the linux command “cat” in order to see what is inside the files. I turn off the triggers
manually by echoing in the string literal “none” and now I'm musing over why the program can't do

the same thing..

Fopen had found the needed files and reported no failure in opening them... I think this means I
simply must have found the correct files. But then why can'tI write to them? Was this a permissions
thing? I try some sudo ./LEDHello! No dice. Alright, I'll set permissions aside from now and focus on
something else.

Now there are all sorts of things could be wrong, but I'm going to sit for a moment and try to think of
the 'simplest' most programmatic and easy-to-debug solution I could think of. What is the most likely
reason for all this hullabaloo?

Probably the fwrite statements, which naturally come after the fopen statements. I've tweaked them
to suit my own needs, so perhaps I've failed them somehow.

I browse about on the fwrite statements, and do some debugging, such as printf-ing out what the size
of my strings are for disabling the LED triggers. I'm concerned they either include or fail to include
some kind of EOF I ought to be worrying about. It turns out they have no EOF; they contain their
characters and nothing more.

 Now the original fwrite statement I'd examined in the tutorial had seemed to be all backwards,
plugging in numbers in strange places (like the size of the string in the place where size(char) should
have gone, and size(char) where the length of the string should have gone). I'd tried to fill in the fields
in a more sensible way, using a string.c_str(), a sizeof(char), and a string.length(). But what if these
functions are letting me down? I'm not trusting C++'s string to behave nicely with C's gritty underbelly.

The fact that the samples I found used char* instead of string gave me a place to start. Their 'r+' hadn't
served me, but perhaps char* would provide some insight. There was also something else strange I'd
done to the fwrite for toggling the LED's brightness. Hadn't I tried to write an integer into the file?

I go back into smallTest and ome upon a realization. I have been writing 0 and 1 into my LED files as
integers, but using the Linux command 'file' on the brightness file reveales that they are ASCII text
files, not binary files. I realize I probably ought to be printing in a character string of size one, not an
integer!

I can't really debug the triggers anymore unless I unplug and replug the board in. Easy enough one
supposes, but I decide to focus on the more observable problem of turning the LEDs on and off now
that the triggers are disabled.

Now I use the low-level char* msg = “1” in my smallTest function . I still don't trust strings, and I'm not
sure if the default functions they come with can be trusted.

Nothing. Drat. I change the fopen command to “w+” and throw in some printf statements.

It works.

Holy crap! The light is on! Eureka!

I do some basic debugging and fill in a whole bunch of new information in my other functions, and am
able to successfully turn on all the LED's by tossing in a “1.”

Wahoo! Oops, I have to turn a 1 into a “1” and a 0 into a “0” or I won't be able to turn the lights off. I
rewrite the setLED function to include a new NumberToString to do this transition, and I update the
trigger function as well despite being unable to test it.

Hey, none of the lights turn off. Why? Is this a string thing? Is .length() letting me down? I printf it out

and search the web a bit. No, it looks good. Disgrunted, I typed out a big printf statement in which I
print the new state as a string, then sizeof(char), then string.length(), and so forth.

The lights turn off. What? How? I didn't change anything! I run the program again, and the lights turn
on and back off.

Suddenly, a light turnes on in my head as well. Wait a minute! It wasn't the “w+” that had fixed my
program! It was the debug printf statements! Years of experience programming with Actionscript and
grading C projects made of nothing but simple cout statement smack me upside the head. There was
some kind of timed event going on in the background, independent of the linear and chronological
nature of the code, that was arbitrarily completing or not completing depending on how fast the
program was running.

The debug statements had slowed the program down- through luck, more than anything- and
permitted the timed event to execute. And in this case, the 'timed event' were buffers.

You see, most print statement in C and C++ write to some kind of buffer or stream, and then wait
patiently to be 'flushed' so that they can display themselves. I realized that this must have been the
same case with fwrite(). That meant that fwrite() was correctly receiving all the data it needed to
write, and that's why no errors were being thrown. It was writing to a buffer, and then I was
fclose()ing the file before the buffer had time to flush. No error thrown. No output witnessed. No
crash. A silent but deadly espionage.

A quick google search brings me to the fflush()function. I throw it in before the fclose() and take out
the printf statements. I cross my fingers...

Victory. The program runs without a hitch, the LEDs turn on and off .

Hey you know what, now that I think about it, I really need to start up a GIT repository in my Linux
Virtual Machine. Victory! I even managed to use Import->Existing Projects into Workspace and not
check “Copy files” and now I have the git repository set up in a folder called MyDragon way outside of
workspace where I can git them. I will probably transfer this file into that repository XD.

7 The Legs
The last thing I have to get done before demo day is getting those leg servos to twitch. I dont' have to
get them running on C++ code yet, but I at least have to access them through the board. This is hard
and takes a lot of searching, because as far as I can tell the serial ports don't work like the LEDs. Rather
than being files with a set state, they're more like the streams I was working with the other day.
They're channels. Information slides down them and disappears into the other side.

First I have to hook everything up physically though.

I make sure The Captain is on hand before I start trying to put anything together, and he makes sure I
am using the images in my Chinese instructions correctly. Putting the robot's body together was so
easy I barely felt the need to document it; all I had to do was screw things into place. Yet these boards
sort of scare me. How do I connect components? What can I accidentally damage? What order do I
plug things in? I carefully attach the control board to the BeagleBone and then the control board to
the servo. The Captain promises me I will hurt neither myself nor the board.

In looking around the internet and talking to The Captain, I realize that the tty files under /dev/ are the
tools I need to talk to Chloe's leg servos. I know I have to send a 'string' into those files, and I'm pretty

sure I can just echo into them. Bewildered but hopeful, I try to echo a “#0 P500 T500\r\n” > ttySO
command into the ttyS0 file. It doesn't work, and I'm actually slightly disappointed. I try every servo
number and every ttyS* number. Nothing works.

Darn. I search the internet and start getting frustrated with lots of complex terminology trying to
explain really round-about ways for implementing physical components on generic or perhaps self-
made boards. Arg, I don't know what question to ask. I start seeing how the BeagleBone Black is
different from the White, but I'm not sure if my own internal kernel is upgraded to the same level as
the Black or not. What I do see is a lot of people complaining that ttyO0 and ttyO1 are all missing. I
also see someone else saying not to use ttyS0 to talk to the serial ports (S stands for serial, I believE)
but to use ttyO0. Odd. I try ttyO0.

Something's been bothering me. Why are there only 4 ttyS devices, if there are 5 UARTs? Later I realize
this might be because one of the UARTs is wired to the USB, but in trying to get more information
about which tty is my UART1, I stumble across something that suggests any 'real' serial ports are
usually archived under a directory with a long 'code'. Anything under a folder that says 'serial'
probably doesn't exist, and is just there by default.

What does that mean? Is it true for my BeagleBone? Hmm. I get frustred and go in circles for a bit.
What the heck is ttyS0? TtyO0? Are they missing because of a revision thing? Where are they now?
Ugh this is awful, trying to figure out what's going on. I know the basics are that I need to read to a
file. Let's see what I can do!

After much digging and wading through long lists of complicated explanations, I managed to find what
I was looking for- or at least part of it. It's involves taking what I find at /lib/firmware/ named BB-
UART1-00A0.dtbo (and 2, 4, and 5) and sending its results to /sys/devices/bone_capemgr.8/slots

The line that liberated me was at the very end of a very long-winded tutorial about the Device Tree
and building 'capes. ' After a long discussion in pinmuxing (I still don't
know what that word means) and capes (nor that) and all sorts of
other wonderful topics, it gave me a splendid little line of yum yum
that looked like this: # echo BB-UART5 >/sys/devices/bone_capemgr*/slots

Liberation.

Suddenly I have a ttyO1 port. I run it again for BB-UART1 and BB-
UART2, and I get a ttyO2 port. At this point I am concerned that
UART1 is routed to the USB and I have wired up my board to work with
UART2. I push in an attempt at sending a command. Nothing. I try it
again with slight variations. Nothing.

Frustrated, I seem to remember I have to initialize serial
connections, something about baud rate. I look for some samples on
how to accomplish this and find the line: stty -F /dev/ttyUSB0 9600.
I try filling in my own parameters and write: stty -F /dev/ttyO2
115200

I don't get anything exciting back.

I try echo -en “#0 P500 T500\r\n” > ttyO2

I hear the servo move.

The demo is done, and I am victorious.

The important thing to realize now is that I have to get ttyO02
initialized from the code. Somehow. That's the only way I can stream
to it, terminos to it, or whatever input/output method I pick. The
nuances of moving the leg left or right or whatever are nothing
compared to figuring out how to talk to it in the first place. And
the answer to that seems to be dealing with pinmux.

IX Conclusions
Chloe, Part I is in its final stages of documentation, wrap up,
presentation, and finalization for Chloe, Part II. It is difficult to
draw any thesis-related conclusions at this point in time, as I've
basically initialized the body on which the actual personality will
build. However it's clear to see that I've already met a large number
of learning outcomes.

Looking back at learning outcomes for the course:

1. Students will learn to use physical input devices such as
switches, sensors, and cameras
1. This is to be handled in Part II

2. Students will develop physical interactive media prototypes
1. Done

3. Students will research independently the best software and
hardware solutions for a personal project
1. Done and done! I selected the board and robotics kit with

input from numerous sources, I am working on picking a
battery that suits my needs, I am familiar with various
components stores all over my area, and I most certainly have
gotten my own independently researched software solution up
and running.

4. Students will develop a personal project using custom software
and hardware
1. Done and done; I am putting together a board and a kit that

were not explicitly made for one another or shipped together,
and I will late be adding additional sound capture devices.
The software I'm programming to run on the board is entirely
my own.

5. Students will product short video documentation of their
projects for festivals and portfolio reels
1. I have produced short videos documenting Chloe's first

movements, as well as gathered together photographs of her
early life pre-assembly. I will be able to use these to
produce my end video documentation.

6. Students will write research reports on key artists and
designers working in the interactive field
1. Yet to be determined

Right now I'm dissatisfied that Chloe still cannot stand on her own,
but I know I have the resources to get her upright prior to the start
of Part II. Clearly I need to be able to accurately transmit output
before I will be ready to receive input. I do not believe getting the
library to work will be one of my larger challenges; because despite
the difficulties of learning a new API, there are nowhere near as
many unanswered ambiguities about software implementation in my mind
as there are about hardware implementation.

I gauge that I am currently on track to complete Chloe's project as
described, and I look forward to seeing her stand.

X References
• Installing Ubuntu on the BeagleBone. (n.d.). Retrieved October 9, 2013, from

http://zpriddy.com/installing-ubuntu-on-the-beaglebone/

• Arduino Aluminium Hexapod Spider Six 3DOF Legs Robot Frame Kit @GoodLuckBuy.com.

(n.d.). Retrieved October 9, 2013, from http://www.goodluckbuy.com/arduino-aluminium-

hexapod-spider-six-3dof-legs-robot-frame-kit.html

• BeagleBoard.org - community supported open hardware computers for making. (n.d.).

Retrieved October 9, 2013, from http://www.beagleboard.org/

• BeagleBoard.org - faq. (n.d.). Retrieved October 9, 2013, from

http://beagleboard.org/support/faq

• BeagleBoard.org - Getting Started. (n.d.). Retrieved October 9, 2013, from

http://www.beagleboard.org/Getting%20Started

• beagleboard/linux · GitHub. (n.d.). Retrieved October 9, 2013, from

https://github.com/beagleboard/linux

• BeagleBoardBeginners - eLinux.org. (n.d.). Retrieved October 9, 2013, from

http://elinux.org/BeagleBoardBeginners

• BeagleBoardPinMux - eLinux.org. (n.d.-a). Retrieved October 9, 2013, from

http://elinux.org/BeagleBoardPinMux#UART2

• BeagleBoardPinMux - eLinux.org. (n.d.-b). Retrieved October 9, 2013, from

http://elinux.org/BeagleBoardPinMux

• BeagleBone - eLinux.org. (n.d.). Retrieved October 9, 2013, from http://elinux.org/BeagleBone

• Beaglebone + Ubuntu | MitchTech. (n.d.). Retrieved October 9, 2013, from

http://mitchtech.net/beaglebone-ubuntu/

• Beaglebone and the 3.8 Kernel. (n.d.). Retrieved October 9, 2013, from

https://docs.google.com/document/d/17P54kZkZO_-JtTjrFuVz-

Cp_RMMg7GB_8W9JK9sLKfA/pub

• BeagleBone Black – Ubuntu Precise 12.04 LTS, Ubuntu Raring 13.04, Debian Wheezy 7.0.0

Images for the BeagleBone Black – armhf.com. (n.d.). Retrieved October 9, 2013, from

http://www.armhf.com/index.php/boards/beaglebone-black/

• BeagleBone Getting Started Guide. (n.d.). Retrieved October 9, 2013, from

http://www.lvr.com/beaglebone.htm

• bradfa/beaglebone_pinmux_tables · GitHub. (n.d.). Retrieved October 9, 2013, from

https://github.com/bradfa/beaglebone_pinmux_tables

• EBC Exercise 10 Flashing an LED - eLinux.org. (n.d.). Retrieved October 9, 2013, from

http://elinux.org/EBC_Exercise_10_Flashing_an_LED

• embedded - Driving Beaglebone GPIO through /dev/mem - Stack Overflow. (n.d.). Retrieved

October 9, 2013, from http://stackoverflow.com/questions/13124271/driving-beaglebone-

gpio-through-dev-mem

• FAQs | Raspberry Pi. (n.d.). Retrieved October 9, 2013, from http://www.raspberrypi.org/faqs

• Fire Bird V Atmega2560 Hexapod Robotic Research Platform - Buy Fire Bird V Atmega2560

Hexapod Robotic Research Platform Product on Alibaba.com. (n.d.). Retrieved October 9, 2013,

from http://www.alibaba.com/product-

free/123806154/Fire_Bird_V_ATMEGA2560_Hexapod_Robotic.html

• gcc - Cross-Compiling for an embedded ARM-based Linux system - Stack Overflow. (n.d.).

Retrieved October 9, 2013, from http://stackoverflow.com/questions/12512101/cross-

compiling-for-an-embedded-arm-based-linux-system

• Getting started with Linaro: Software, Documents & Discussion. (n.d.). Retrieved October 9,

2013, from http://www.linaro.org/engineering/getting-started

• Getting UART2 (/dev/ttyO1) Working on BeagleBone Black | Pignology News. (n.d.). Retrieved

October 9, 2013, from http://blog.pignology.net/2013/05/getting-uart2-devttyo1-working-

on.html

• How to copy files using SSH [Archive] - The macosxhints Forums. (n.d.). Retrieved October 9,

2013, from http://hintsforums.macworld.com/archive/index.php/t-29244.html

• How to make your first robot | Let’s Make Robots! (n.d.). Retrieved October 9, 2013, from

http://letsmakerobots.com/start

• HowToIdentifyADevice/Serial - Debian Wiki. (n.d.). Retrieved October 9, 2013, from

https://wiki.debian.org/HowToIdentifyADevice/Serial

• Intrinsyc Software — Qualcomm DragonBoardTM. (n.d.). Retrieved October 9, 2013, from

http://shop.intrinsyc.com/collections/snapdragon-1

• kirillv/cpp-inverse-kinematics-library · GitHub. (n.d.). Retrieved October 9, 2013, from

https://github.com/kirillv/cpp-inverse-kinematics-library

• LED Control Sample Code. (n.d.). Retrieved October 9, 2013, from

http://www.lvr.com/code/led_control.c

• linux - Two-way C++ communication over serial connection - Stack Overflow. (n.d.). Retrieved

October 9, 2013, from http://stackoverflow.com/questions/11677639/two-way-c-

communication-over-serial-connection

• No such file or directory error. (n.d.). Retrieved October 9, 2013, from

http://ubuntuforums.org/showthread.php?t=2031471

• OfficeofCTO/HardFloat/LinkerPathCallApr2012 - Linaro Wiki. (n.d.). Retrieved October 9, 2013,

from https://wiki.linaro.org/OfficeofCTO/HardFloat/LinkerPathCallApr2012

• onboard LED control of beaglebone | LinkedIn. (n.d.). Retrieved October 9, 2013, from

http://www.linkedin.com/groups/onboard-LED-control-beaglebone-1474607.S.119144212

• piranha32/IOoo · GitHub. (n.d.). Retrieved October 9, 2013, from

https://github.com/piranha32/IOoo

• Platform | Pandaboard. (n.d.). Retrieved October 9, 2013, from

http://pandaboard.org/content/platform

• Setting up Eclipse on the Beaglebone for C++ Development | derekmolloy.ie. (n.d.). Retrieved

October 9, 2013, from http://derekmolloy.ie/beaglebone/setting-up-eclipse-on-the-

beaglebone-for-c-development/

• SourceForge.net: Robotics Library. (n.d.). Retrieved October 9, 2013, from

http://sourceforge.net/apps/mediawiki/roblib/index.php?title=Robotics_Library

• SpiderBot (Hexapod) by mind - Thingiverse. (n.d.). Retrieved October 9, 2013, from

http://www.thingiverse.com/thing:1603

• T8 - RobugtixTM. (n.d.). Retrieved October 9, 2013, from http://www.robugtix.com/t8/

• T8 robot tarantula gives everyone the willies. (n.d.). Retrieved October 9, 2013, from

http://www.gizmag.com/robugtix-t8-robot-tarantula/28168/

• Ubuntu Manpage: ost::TTYStream - TTY streams are used to represent serial connections.

(n.d.). Retrieved October 9, 2013, from

http://manpages.ubuntu.com/manpages/jaunty/man3/ost_TTYStream.3.html

• Using Eclipse to Cross-Compile for BeagleBone Black - Michael Leonard. (n.d.). Retrieved

October 9, 2013, from http://www.michaelhleonard.com/cross-compile-for-beaglebone-black/

• Using Eclipse to Cross-compile, Part 1: Install a Toolchain. (n.d.). Retrieved October 9, 2013,

from http://www.lvr.com/eclipse1.htm

• Using the user leds - BeagleBone. (n.d.). Retrieved October 9, 2013, from

http://beaglebone.cameon.net/home/using-the-user-leds

XI Appendix A: Schematics

1 BeagleBone

2 Control Board

a Schematics

b Connections

c Communication

<ch> P <pw> S <spd>... # <ch> P <pw> S <spd> T <time>
<ch> =舵机号, 0 - 31.
<pw> =脉冲宽度单位 微秒 , 范围500 - 2500.
<spd> =移动速率 us/s 每秒移动脉宽数针对一个舵机有效
<time> =移动到指定位置使用的毫秒数 (Optional)
例子 "#5 P1600 S750 "

移动舵机号5 到脉宽 1600us 速率为每秒移动脉宽750微秒
"#5 P1600 #10 P750 T2500 "
移动舵机号5 到脉宽 1600us 移动舵机号10 到脉宽 750us 使用时间为2500ms
注： T 可以对前面所有舵机有效除了有S的舵机号

#5 P1600 #10 P750 #12 P1700S500 T2500 5号和10舵机是使用2.5S完成移动12舵机看它以速率
500us/s实际使用时间确定

注意外接单片机、串口助手，通讯代码需加回车 \r\n
如 舵机控制：#5 P1600 T500\r\n

动作组控制：PL0 SQ1 SM100\r\n

外接单片机或者ARDUINO时，运行动作组执行指令说明

运行动作组
PL <p> SQ <s> [SM <m>] [IX <i>] [ONCE]
PL 0 指定动作场景 必须指定
SQ <s> 指定动作组编号 s, 0 – 127 不指定为0
SM <m> 指定速度比m, –200- 200 不指定为100
IX <i> 指定启动动作组开始步编号i , 0 - 255。 不指定为0
ONCE 指定执行动作一次。 不指定为循环运行

范例说明

在动作场景中运行动作组5， 100%速度正向运行。
PL 0 SQ 5
改变动作场景中的速度，以50%速度反向运行。
PL 0 SM -50
暂停动作场景 (设置速度为0)
PL 0 SM 0
改变动作场景的速度为200%正向运行。
PL 0 SM 200
停止动作场景
PL 0
在动作场景中运行动作组15， 开始步编号为2,以70%的速度反向运行, 只运行一次
PL 0 SQ 15 IX 2 SM -70 ONCE
ARDUINO控制舵机板范例：

void setup()

{

Serial.begin(115200);//波特率锁定在115200，不能修改

}

void loop()

 {

 Serial.println("PL0");//先停止以前的动作组

delay(100);//延时

 Serial.println("PL0 SQ1 SM100 ");//以100%速度运行动作组1

 delay(500);//延时500MS，以保证该动作组运行完成

 Serial.println("#5 P1600 T500");//5号舵机用500MS的时间运行到P1600的位置

 delay(500);// 延时500MS，以保证该舵机运行到指定位置

}
注意外接单片机、串口助手，通讯代码需加回车 \r\n
如 舵机控制：#5 P1600 T500\r\n

动作组控制：PL0 SQ1 SM100\r\n

3 Vital Robot Images

	I Design Abstract
	II Table of Contents
	III Introduction
	1 Project Overview
	2 Project Purpose
	3 Report Structure
	4 Project Motivation

	I Design Abstract
	a A Note on Human Resources
	2 Deciding on the Board
	3 List of Parts
	1. BeagleBoard BeagleBone

	I Design Abstract
	I Design Abstract
	I Design Abstract
	V Project Management
	1 Documentation as a Design Methodology
	2 Project Schedule
	3 Project Log

	I Design Abstract
	I Design Abstract
	1 Implementation and Debugging
	a Introductory Exploration of the Board and Its Abilities

	I Design Abstract
	I Design Abstract
	c Step 3
	d Step 4
	e Step 5
	4 “Baseline Software...”
	a u-boot
	b Linux Kernel
	c OE-core based BSP
	d Mentioning “Linaro”

	VII Switching the Operating System
	1 It Starts...
	2 “Screen”
	3 Retrospect – Past Tense
	4 Finding Out the IP Address, in Retrospect
	5 Reflection on Installation

	VIII Stage Two: Cross-Compiling
	4 Onto the LEDS
	5 LEDS in C(++)
	6 The LEDS Shall Work
	7 The Legs

	IX Conclusions
	X References
	XI Appendix A: Schematics
	1 BeagleBone
	2 Control Board
	a Schematics
	b Connections

